

1st DOE Distributed Energy Resources Conference and Peer Review

Real Time Grid Reliability Management

Reliability and Markets

November 29, 2001 Washington, DC

Robert J. Thomas

Cornell University

Power Systems Engineering Research Center

Grid Reliability Management Challenges

- Large volumes of transactions/low reserve margins stressing grid operations
- System constraints affecting use and care of the grid system
- Deregulation uncertainty contributed to reduced systems expansions and upgrades
- Western system margin is low; exact amount unknown

Vision For Reliability Management in Restructured Electricity Markets

- Reliability management must move from modeling machines and engineering analysis to understanding market behavior and its impact on grid systems
- Operators need real-time information that facilitates reliability management
- Operators need tools to measure, monitor, assess, and predict both system performance and the performance of market participants
- Grid needs to be enhanced to incorporate the latest advances in sensing, communication, computing, visualization, and algorithmic techniques and technologies

CERTS Real-Time Grid Reliability Management Roadmap

Reliability
Adequacy and
Performance

System Security
Management Tools

Phasor Applications for Dispatchers and Engineers, and Future Controls

Development, and Demonstrate Reliability Adequacy Tools:

- VAR Management
- Ancillary Svcs Performance
- Wide Control Areas ACE/AIE Performance
- Effective Information Visualization

Security and Congestion Assessment Tools:

- Integrated Security Analysis
- Congestion Management
- Cascading and Self Organized Criticality Utilization

Dispatcher and Operating Engineering Applications Using Synchronized Phasor Measurements:

- Monitoring & Post Disturbance Tool
- Enhance Stability Nomograms
- Standard, Low Cost, Reliable Phasor Technologies
- Validation of Stability Models

Prototype New Real Time Controls

Based on Distributed Closed Loop Feedback Controls and Synchronized Phasor Measurements

1999-2001 2001-2003 2000-2003 2001-2005

GOAL: AN AUTOMATIC SWITCHABLE NETWORK

First Generation Products

- VAR Management Tool
 - Developed by DOE in FY99-FY00
 - CEC funding to demonstrate at CAISO Fall 2001
 - In discussion with AEP for future demonstration
- NERC ACE/AIE Compliance Monitoring Tools
 - Developed by DOE in FY01
 - Demonstrations at NERC Security Coordinators Fall 2001
- Synchronized Phasor Measurement Workstation
 - Developed by DOE/EPRI/BPA/WAPA in WAMS program
 - CEC funding to demonstrate updated workstation at CAISO - Fall 2001
 - In discussions with AEP and TVA for future demonstrations

CERTS VAR Management Tool: Turns Data Into Information

ACE Monitoring – Identifies Problems In Real-Time and Supports Corrective Action

Each bubble represents a Control Area. The Inner most color is the ACE. The outermost is the ratio ACE/L10 where ACE / L10 > 1 Red, ACE / L10 < 1 Blue, and anything else = White.

Modeling failure for WSCC breakup of August 10, 1996

(MW on California-Oregon Interconnection)

Reliability and Markets – What are we working on?

- Understanding linkages between the physical grid and market mechanisms that will lead to the development of a new generation of design and operating tools
- Tools to increase reliance on market forces to ensure system reliability
- Market designs for system reliability needs (stable and efficient) validated through experimental testing

Why do experimental testing of electricity markets?

- There is a large gap between observed behavior and what is predicted by economic theory
- Currently known models are too complex for theory to adequately address a complete analysis
- Less expensive financially and socially to try new concepts in the lab before trying them on a state

Objectives

Replicate the high price volatility observed in existing electricity markets using a "smart" market (POWERWEB)

- 30 Bus Network
- Human subjects (6) represent generators
- Pay real money proportional to profits
- Human subjects (6) represent generators
- Pay real money proportional to profits
- Use various auction mechanisms
- Make load stochastic
- Standby charges for participation

Test four different auctions

- Uniform price auction with price inelastic load (last accepted offer)
- Uniform price auction with price responsive load
- Discriminative auction (pay actual offers)
- Soft cap auction (uniform price below and discriminative price above)

Capacity Offered into an Auction Without Standby Costs

Market Prices Without Standby Costs

Capacity Offered into an Auction with Standby Costs

Market Prices with Standby Costs

PowerWeb

Can Operators Predict Market Behavior?

Results of Market Simulations Performed by PSERC

Regulated System

- Economic dispatch
- Strong correlation between power flow and demand

Deregulated Market

- Market-based dispatch
- Poor correlation between power flow and demand

dark blue <\$50/MWh - light blue \$50-\$75/MWh - yellow \$75-\$90/MWh - red >\$90/MWh

dark blue <\$50/MWh - light blue \$50-\$75/MWh - yellow \$75-\$90/MWh - red >\$90/MWh

dark blue <\$50/MWh - light blue \$50-\$75/MWh - yellow \$75-\$90/MWh - red >\$90/MWh

dark blue <\$50/MWh - light blue \$50-\$75/MWh - yellow \$75-\$90/MWh - red >\$90/MWh

Average Prices for High and Low Loads

What have we tested for?

- Simple energy auctions
 - cost efficiency
 - competitive pricing
 - price spikes
 - market power
 - unit-commitment issues
 - pay-as-bid/soft-cap auctions
- Multi-dimensional auctions
 - reactive power
 - reserves
 - regulation, load following, etc.

